Characterizing graphs of maximum matching width at most 2
نویسندگان
چکیده
The maximum matching width is a width-parameter that is defined on a branchdecomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor obstruction set. Also, we compute the exact value of the maximum matching width of a grid.
منابع مشابه
Matching Integral Graphs of Small Order
In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...
متن کاملCharacterizing Graphs of Small Carving-Width
We characterize all graphs that have carving-width at most k for k = 1, 2, 3. In particular, we show that a graph has carving-width at most 3 if and only if it has maximum degree at most 3 and treewidth at most 2. This enables us to identify the immersion obstruction set for graphs of carving-width at most 3.
متن کاملMinor-matching hypertree width
In this paper we present a new width measure for a tree decomposition, minor-matching hypertree width, μ-tw, for graphs and hypergraphs, such that bounding the width guarantees that set of maximal independent sets has a polynomially-sized restriction to each decomposition bag. The relaxed conditions of the decomposition allow a much wider class of graphs and hypergraphs of bounded width compare...
متن کاملEliminating Odd Cycles by Removing a Matching
We study the problem of determining whether a given graph G = (V,E) admits a matching M whose removal destroys all odd cycles of G (or equivalently whether G−M is bipartite). This problem is also equivalent to determine whether G admits a (1,1)-coloring, which is a 2-coloring of V (G) in which each color class induces a graph of maximum degree at most 1. We show that such a decision problem is ...
متن کاملSim-width and induced minors
We introduce a new graph width parameter, called special induced matching width, shortly sim-width, which does not increase when taking induced minors. For a vertex partition (A,B) of a graphG, this parameter is based on the maximum size of an induced matching {a1b1, . . . , ambm} in G where a1, . . . , am ∈ A and b1, . . . , bm ∈ B. Classes of graphs of bounded sim-width are much wider than cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1606.07157 شماره
صفحات -
تاریخ انتشار 2016